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Evolutionary Adaptation to Social Information
Use Without Learning

James M. Borg(B) and Alastair Channon

School of Computing and Mathematics, Keele University, Keele, UK
{j.borg,a.d.channon}@keele.ac.uk

Abstract. Social information can provide information about the pres-
ence, state and intentions of other agents; therefore it follows that the use
of social information may be of some adaptive benefit. As with all infor-
mation, social information must be interpretable and relatively accurate
given the situation in which it is derived. In both nature and robotics,
agents learn which social information is relevant and under which circum-
stances it may be relied upon to provide useful information about the
current environmental state. However, it is not clear to what extent social
information alone is beneficial when decoupled from a within-lifetime
learning process, leaving evolution to determine whether social informa-
tion provides any long term adaptive benefits. In this work we assess this
question of the adaptive value of social information when it is not accom-
panied by a within-lifetime learning process. The aim here is to begin to
understand when social information, here expressed as a form of public
information, is adaptive; the rationale being that any social information
that is adaptive without learning will be a good base to allow the learn-
ing processes associated with social information to evolve and develop
later. Here we show, using grounded neuroevolutionary artificial life sim-
ulations incorporating simulated agents, that social information can in
certain circumstances provide an adaptive advantage to agents, and that
social information that more accurately indicates success confers more
reliable information to agents leading to improved success over less reli-
able sources of social information.

Keywords: Social information · Public information · Evolutionary
adaptation · Neuroevolution · Artificial life

1 Social Information, Learning and Evolution

Social information can broadly be thought of as information derived from the
behaviours, actions, cues or signals of other agents [1]. As social information
necessarily involves the direct or indirect broadcasting of information in to the
public domain, it is sometimes known as (or conflated with) public information
[2]. Here we assess whether the use of social information in populations of simu-
lated neuroevolutionary agents is adaptive when decoupled from within-lifetime
learning processes. Within-lifetime learning processes confer significant adaptive
c© Springer International Publishing AG 2017
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advantages to agents employing them, be it through the development of a set
of robust and flexible behaviours, the rapid adaptation to new environments or
circumstances, the quick incorporation of new information, or the guiding of the
evolutionary process itself [3]. The adaptive advantages of learning are partic-
ularly potent when social information is incorporated alongside innovation and
individual learning [4], resulting in social learning and potentially even cultural
evolution [5]. However, as beneficial as within-lifetime social learning processes
are, it is unclear to what extent social or public information has an adaptive
benefit when decoupled from these learning processes and evolution is left to
determine the value of social information. Is the incorporation of social informa-
tion alone enough to gain an adaptive advantage over non-social agents? Or are
learning processes necessary to allow social information to confer any benefits?
These are the questions that we address in this paper.

Social learning is seen widely in nature [6] in a range of species as diverse as
humans and nine-spined stickleback fish [7]. The mechanisms and processes that
underpin social learning are themselves broad, ranging from teaching, imitation
and emulation to stimulus enhancement and exposure [8], with any of these
mechanisms potentially leading to the formation of traditions and cultures [5,9].
However, within each social learning category there is some dependence on who
information is obtained from, be it a teacher or which agent is unintentionally (or
intentionally) exposing an individual to new information. As social learning is
necessarily conformist, a poor social information model may result in the discov-
ery and propagation of sub-optimal behaviours [10]. Despite the potential pitfalls
of over-conformist social learning, including sub-optimal behaviour development
[10] and even population collapse [11,12], social learning, and therefore social
information transfer, can be of great benefit to agents, thus explaining why even
simple forms of social information transfer are seen so widely in nature [8,13,14]
and have been shown to produce complex behaviours that are easily attributed
to more complex social learning mechanisms like imitation [15]. At the heart of
the problem being addressed here are three core arguments. (1) Information is a
fitness enhancing resource [16], even when information suppression is seen to be
adaptive [17] or when information is encoded or interpreted incorrectly [16] - any
new information about the world enables populations of agents to better adapt
to the world they are in, even if this means disregarding or suppressing informa-
tion. (2) Incremental evolution is not a process of unguided random variations,
but a process that itself can adapt in a way that is analogous to the kind of
learning seen in cognitive organism [18], leading to complex and robust adaptive
traits in nature, autonomous robots [19] and simulated agents [20] in the same
way that learning can lead to complex and adaptive behaviours (though on a
different time scale). (3) Inadvertently expressed public information and simple
mechanisms of social information transfer can lead to behaviours that are suf-
ficiently complex to enable cultural evolutionary processes [5,21]. These three
core arguments give us good reason to believe that social information without
within-lifetime learning processes should still be adaptive, and therefore lead to
evolution adopting the use of social information to the benefit of social agents
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over non-social agents. Though we must still be mindful that social information
may be at odds with personal beliefs [21] or lead to population-level conformism
to sub-optimal behaviours [10], thus leading to a trade-off between the accom-
modation of social information and the evolution of robust evolved behaviours.

This leads us to the hypothesis that agents making use of social information
should outperform non-social agents: any additional information, that is not just
noise, that provides more information about the environment should lead agents
to an improved “performance” in the environment over agents without access to
such information. However, social information may only be useful when it accu-
rately indicates success or indirectly leads to success, and therefore may provide
little or no concrete benefit in complicated or less predictable environments - in
these more challenging environments learning may be necessary to allow tem-
porarily useful social information to be quickly adopted and then rejected when
it is no longer relevant. This hypothesis will be tested by modelling populations
of agents who have no social information available to them and populations of
agents with various forms of social information available to them. Each social
information strategy will be tested against the non-social strategy, starting ini-
tially with the most basic strategy available: presence, with the null hypothesis
in each case being that the social population does not show an improved ability
to solve the task at hand compared to non-social agents. The social information
strategies used here are: presence, action, health and age. Presence social infor-
mation simply enables agents to detect the presence of other agents (non-social
agents are essentially blind to other agents); action enables agents to see what
other agents are currently doing; health enables agents to see the current energy
or battery state of others; and age information enables agents to see how long
others have lived for.

2 EnVar and Environmental Set-Up

The task world used here is known as EnVar. EnVar is a bounded (non-toroidal)
2D environment containing a variety of consumable resources known as plants.
Plants are recognised by agents simply as an RGB value. Plants are divided into
a number of species, each with a base RGB value and a radius in RGB space.
Plants are generated within these RGB regions and identified as belonging to
the nearest species according to euclidean distance in RGB space. Each plant
species is assigned an energy value, which is transferred to agents if the plant of
that species is consumed; energy values may be positive or negative. Notionally
the EnVar world is broken up in to cells, though here each cell represents a
pixel and therefore the world can be considered to be continuous. Plants in the
world take up a number of cells, forming a block, with each block only being
able to be eaten a certain number of times before being exhausted (here set to
be 200 eating events). Once a plant block has been exhausted it is no longer
consumable and therefore removed from the world to be replaced by a new
block from a random plant species somewhere else in the world - this maintains
a constant number of food blocks in the world at any time. Agents are permitted
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to share space with a plant resource but cannot overlap with each other, thus
removing the possibility of agents piling up on top of one another on valuable
food resources. In this work EnVar is set up to create a 700 × 700 pixel sized
cell world, containing five hundred 10 × 10 pixel blocks of plants. In order to
test our hypothesis we test populations of social and no social agents in a set
of increasingly difficult environments. Environmental difficulty is dictated by
the ratio of positive food resources to negative food resources. The simplest
world used here has an equal (1:1) ratio of positive food species to negative food
species. Tests get progressively harder by increasing the number of negative
food species, whilst maintaining only one positive food species, resulting in the
most difficult world used here having a 1:9 ratio of positive food species to
negative food species. As each plant species has a equal chance of appearing
in the world, and covers approximately the same portion of RGB space, agents
in the most difficult environment are nine times more likely to experience a
negative plant resources than a positive plant resource. In the results section
below environment 1 relates to a 1:1 ratio environment, with environment 9
relating to a 1:9 ratio environment. For all tests here negative food species come
with an energy value Eneg = −10.0, with positive food species contributing an
energy value of Epos = 1.0 when consumed. This provides a strong evolutionary
pressure to avoid eating negative food species.

3 Neuroevolutionary Model

Agents in the EnVar simulation world are grounded 2D simulated agents, con-
trolled by a hybrid neural network architecture known as the Shunting Model1.
The shunting model uses two interacting neural networks to determine agent
behaviours, here represented as a discrete set of agent actions. The two interact-
ing networks are known as the Decision Network and the Shunting Network. The
decision network is simply a feed-forward neural network comprising of an input
layer, one hidden layer and an output layer. Outputs from the decision network
are used to produce a locally-connected, topologically-organised network of neu-
rons known as the shunting network, which simply places and organises agent
preferences for environmental features and states in such a way to allow the agent
to hill climb in a shunting space (known as the activity landscape) that directly
maps on to their immediate neighbourhood. The shunting network weights are
fixed for all agents, whereas the decision network is genetically encoded and is
subject to change via evolution (See footnote 1).

3.1 The Shunting Network

The shunting network is a locally-connected, topologically-organised network of
neurons that was originally used for collision free motion planning in robots [22]
and has been subsequently applied in a number of 2D and 3D artificial life models

1 For a detailed overview of the Shunting Model architecture please see [22–24].
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[4,10,23,24]. Here the shunting network’s topology is simply superimposed on
to the environment, with each cell in the network topology directly relating to a
pixel within an agent’s visual field. Using the shunting equation (see Eq. 1) values
for each cell (which can be interpreted as representing an environmental feature
or state, and are initially set by the Iota output I obtained from the decision
network) are propagated across the neurons/cells of the network, producing an
activity landscape with peaks and valleys representing desirable and undesirable
features in the environment. The result is a landscape which allows the agent to
follow a route determined by the higher Iota values while avoiding undesirable
valleys. A mock-up example of an activity landscape with a snapshot of the
visual field it represents can been seen in Fig. 1.

dxi

dt
= −Axi +

∑

jεNi

wij [xj ]
+ + Ii (1)

Fig. 1. Mock-up transition from agent visual field to shunting network activity land-
scape: The left-hand grid shows the agent’s visual field with two plant objects and
one other agent occupying the same space as a plant. The right-hand grid shows an
example activity landscape for the visual field. The agent determines that an agent on
a plant is an interesting feature and therefore assigns it a strong positive Iota value (I),
whereas the purple plant is seen negatively and is therefore assigned a strong negative
Iota value. These Iota values propagate over the activity landscape using Eqs. 1 and 2.
The central agent then chooses to move within its immediate Moore neighbourhood to
the cell with highest activity value.

In Eq. 1 each node in the shunting network corresponds to one pixel within
an agent’s visual field; xi is the activation of neuron i; A is the passive decay
rate; Ni in the receptive field of i; wij is the connection strength from neuron j
to i, specified to be set by a monotonically decreasing function of the Euclidean
distance between cells i and j; the function [x]+ is max(0, x); and Ii is the
external input to neuron i (known as the Iota value). The shunting network is
advantageous as it exhibits computational efficiency by not explicitly searching
over all possible paths. In line with the work of Stanton and Channon [24], we use
a simplified, stable solution for Eq. 1 as seen in Eq. 2. Here constant xnew

i = xi

for all i. The maximum Iota value is maxI = 15, with the resulting value for
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xnew
i also being capped at a minimum Iota value minI = −15. This stops Iota

values growing out of control, whilst providing a large enough maximum value
(and a small enough minimum value) to ensure activity propagation across the
network. In order to allow propagation to occur within a time-step, the shunting
equation must be run a number of times, we take this number of iterations to
be equal to the diameter of the visual field.

xnew
i = min

⎛

⎝1
8

∑

jεNi

[xj ]
+ + Ii,maxI

⎞

⎠ (2)

The shunting model implemented here differs in a number of significant
ways from previous Artificial Life implementations [4,10,23,24]. In these pre-
vious implementations agents see their entire environment, have a set number
of discrete environmental features and states to set Iota values for, and are in
the environment alone to complete a predetermined task. Here agents have a
limited view of the world, have the possibility of needing to a set an Iota value
for a plant of any given RGB value, and exist as a population within the environ-
ment (leading to possible input states where an agent can be seen on a particular
plant). In order to accommodate these differences the shunting model here is run
independently for each pixel in an agent’s visual field, which is set here to have
a radius of 30 pixels from center of the agent, with information about that pixel
being included as part of the agent’s decision network input layer. In this way
an Iota value is calculated for each unique environmental state within an agent’s
visual field (in previous models, each discrete environmental state was included
as an output, with only an agent’s internal state or current cell’s state being
accommodated in the input layer of the decision network). This change does
not change the resulting behaviour of the shunting model or activity landscape,
just the way in which information is passed to the shunting network from the
decision network. In order to minimise the amount of processing time required
to populate and create the activity landscape, Iota values are only collected for
unique states experienced by an agent - for a state to be unique it must be a
newly experienced set of decision network inputs (discussed below). To further
optimise processing time, an agent will only produce an activity landscape if its
outputs determine that it should move in the current time step; agents that are
not moving do not need an activity landscape.

3.2 The Decision Network, Neuroevolution and Reproduction

Evolution in the model is applied only to the decision network. The decision net-
work here is a feed-forward neural network comprised of seven standard input
nodes, and an additional social input node in social information tests, eight
hidden units, and two output nodes, resulting in 112–128 weights. Each net-
work layer is fully connected, with floating point weights in the range [−1:1]
being directly encoded from an agent’s genotype. A standard sigmoid activation
function is used at each hidden and output node, though outputs processed for
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deriving agent actions are then scaled to be within the range [0:1] and the Iota
output is scaled to be within the range [minI :maxI ]. As the agent is expected to
produce an Iota value to feed in to the shunting network for each unique environ-
mental feature or state within its visual field, inputs into the decision network
must accommodate both the internal state of the agent, the state of their current
environment, and the state of the environmental feature they are assessing; this
leads to there being two sets of input nodes. The first set of input nodes are
simply plant RGB inputs - if the agent is viewing empty space these inputs are
set to −1, else they are set to be the normalised RGB of the plant being viewed.
Following these inputs are a series of generic inputs, which are dependent on the
agent’s internal state and the current environmental state. These inputs are the
agent’s current battery level in the normalised range [0:1], a moving average of
the agent’s battery level over the previous 100 time steps, the agent’s current
external environmental state and a moving average environmental state, which
are both set to be +1 and do not change in the tests presented here (the model is
set-up to accommodate external environmental change which is not used here).
In social information tests agents have an additional input based on the agent
they of viewing.

The genotype, which is essentially an array of weights, is subjected to both
mutation and crossover should a reproduction event take place. The crossover
mechanism used here is single point crossover, with per locus mutation occurring
with probability pmut = 1/L, where L is the length of the genotype. Mutation
is achieved by way of Gaussian random noise, with a value taken from a normal
distribution with μ = 0, σ = 0.01 being either subtracted or added to the floating
point value at the loci to be mutated. All weight values are bounded in the
range [−1:1]. Reproduction events take place only in response to a death event.
Agents can die if they run out of energy, or if they are in the lowest 10% of
agents ranked by energy at the end of an epoch. The first method for removing
agents from the population ensures that agents cannot remain in the population
with no energy, the second method ensures space is made for new agents to
be created even if the population as a whole is successful at maintaining above
zero energy levels, thus maintaining a selection pressure for task improvement.
Both methods of death are not directly related to task ability as it is possible
for a good agent to be unlucky and never, or rarely, experience a positive food
resource whereas less able agents may have the fortune to be born near an
abundance of food resources or be born relatively close to the end of an epoch.
This method of reproduction maintains a constant population size of 200 agents.
The new agent, or child, created to replace the removed agent is the progeny
of two agents, one of whom is selected in a tournament, the other of which
is selected randomly from the remaining population. The tournament selection
mechanism applied here takes two agent from the population, compares their
current energy levels, and selects the agent with the higher energy level as a
parent. Like in nature this isn’t a perfect measure of fitness as it is possible the
agent is young and therefore has not yet had time to loose significant amounts
of energy, or the agent could have simply been lucky or unlucky with available
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food sources. However, in general agents with more effective behaviours will on
average find themselves with a better energy levels than agents with less effective
behaviours, thus driving evolution toward behaviours that are more suited to the
task or environment at hand. The second parent is selected randomly to ensure
the population doesn’t become dominated by the progeny of a small sub-set of
the population, thus maintaining a level of exploration in the genotypic search
space. New agents are placed in the world within the visual field of one of their
parents.

3.3 Agent Actions and Action Energy Costs

The agents in the model have a set of simple, discrete, actions available to them,
through the output layer of their decision networks: wait, eat or move. The
decision network has two outputs, an Iota output to be fed into the shunting
network and an eat/wait output. The agent first considers its current input state
at its current position - if the agent produces an Iota value above the threshold
θa = 0.5 it indicates the agent if happy with it’s current state and position
and therefore does not move (an activity landscape is therefore not calculated
as it not needed). The agent’s eat/wait output is then considered; if the output
produces a value above the threshold θb = 0.5 the agent attempts to eat whatever
may be at its current position; agents are welcome to try and eat at locations
where no plant is present, but no benefit for this action is conferred, and the
eat action is considered to be an unsuccessful eating attempt rather than a wait
action. If an agent decided to eat at a location containing a plant, the plant’s
energy is transferred to the agent, this does not necessarily lead to the exhaustion
of the plant resource, as plants are considered as a mass. The Iota output is in the
range [−1:1], which is then scaled to be within the range [minI :maxI ] for use in
the shunting network, whereas the eat/wait output is limited to the range [0:1].
If the eat/wait output gives an output below the expected threshold the agent
simply waits at its current location. Waiting and eating both reduce an agents
energy by 0.1 energy units (though eating may result in a net energy gain), with
moving using up 0.2 energy units per time step. Agents will only move if their Iota
output for their current location is below threshold θa, in this case an activity
landscape is created based on the Iota outputs for all visible environmental
features. Agents are born with, and are able to achieve, a maximum energy level
of 100 units. As epochs here constitute 1000 time steps, an agent would be able
to survive for a maximum of one epoch, or one thousand time steps by remaining
inactive. In order to avoid moving agents moving around in circles, or moving
backwards and forwards, in neutral space (where there is no activity gradient
from the activity landscape) consecutive neutral move actions maintain the same
direction of travel with probability pdir = 0.9.

Measurements are taken to determine whether an eat event was successful or
unsuccessful. Any eat action that does not result in a non-negative energy provid-
ing food source being consumed is considered to be unsuccessful, so only eating
non-energy reducing plants is a successful eating action. In order to measure
a population of agents’ success in a given environment, the difference between
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successful and unsuccessful eating actions is measured. This difference measure
is useful as it is possible for agents to spend an equal amount of time eating
successfully and unsuccessfully, which would demonstrate a strong performance
on measure of successful eating, but a weak performance on a measure of unsuc-
cessful eating - the difference instead demonstrates a neutral performance, so a
population that spends very little time eating, but all of that time eating suc-
cessfully (so a picky eating strategy) would be a better performing population
than a locust like population that eats everything in sight.

3.4 Social Information Strategies

Populations of agents using social information differs only very slightly from
non-social populations; social information populations have an additional input
unit for social information, thus non-social agents are rendered blind to other
agents in the world. The social information strategies explored here, including
the no social strategy are discussed below:

No Social: No input node is available to the agent to enable social information
to be used by the agent’s decision network. Agents proceed with no information
about other agents.

Presence: The social information input node receives an input of +1 if another
agent if present within the visual field. No other information about the agent
being viewed is used. This strategy is not dissimilar to the Inadvertent Infor-
mation strategy used by agents in the work by Mitri et al. [17], though the
agents explored in the work presented here do not have a choice about whether
they express social information or not (this is the case for all social information
strategies presented here).

Action: An input representing the current action state of the agent being
viewed. The wait action is input as a value of 0, eat is input as 0.5 and move is
represented as 1.

Health: The current energy levels of the agent being viewed are normalised to
be within the range [0:1] and input to the viewing agent’s decision network.

Age: The age (in time steps) of agent being viewed is normalised using a hyper-
bolic tangent function of the logarithm of the age, which is then normalised to
be within the range [0:1]. See formula (3) where a represents agent age in time
steps.

inputa = (tanh (log (a)) + 1) /2 (3)

4 Results and Discussion

Forty populations of each social information strategy (including no social) were
tested on each environment (1 → 9). Each population was permitted to evolve
in the environment for 100 epochs of 1000 time steps. Reproduction and death
events occurred both within and at epoch, meaning all populations were a mix
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of young and older agents at all stages of evaluation, with agents having no max-
imum age limit. Population data was accumulated for each epoch, and collected
at the end of each epoch. As we are primarily interested here in the final test per-
formance achieved by a population, not the pathway toward this achievement,
average metrics were taken for each population, for each environment, for the last
25 epochs of a test, by which point performance had stabilised across measures.
The results presented here are the median values of the 40 populations’ average
last 25 epochs of data - as this data was rarely normally distributed the medians
were considered to be of more use than means. In order to derive the statisti-
cal significance between population data for each social information strategy a
Mann-Whitney U test was used, with p values being derived from the resulting
Z-scores. Figure 2 presents Z-score values on an inverted secondary y-axis, with
p-value being represented by highlighting over Z-score data points. In order to
test our hypothesis, that populations of agents making use of social informa-
tion should outperform non-social agents, we measure the difference between
how often agents successfully and unsuccessfully apply their eat actions, thus
allowing us to measure the effectiveness of the eating behaviour within popu-
lations. Only comparisons for each social information strategy against the no
social strategy are undertaken to see if any statistically significant differences
arise. We go on to further analyse a wider array of metrics, including success-
ful and unsuccessful eating actions in isolation, agent turnover, and average
agent age.

4.1 Eat Action Performance

In Fig. 2 we can see the difference between successful and unsuccessful eating
actions for each social information strategy compared to results for non-social
populations. Looking first at populations with no social information (black line
on all graphs in Fig. 2) we see that the median difference crosses zero, and there-
fore indicates the eat action is being applied unsuccessfully more often than
successfully, at environment 3 (a 1:3 positive to negative food ratio). All social
information strategies manage to maintain the eat action in favour of success-
ful eating until a more difficult environment - this is most notable for both the
Health and Age social information strategies where eat actions do not begin to
favour unsuccessful eating until environment 5, with the Health strategy re-
crossing zero briefly, and the Age strategy maintaining an almost neutral profile
for all environments after environment 5. This suggests there is a benefit to
social information in that social information may allow populations to maintain
successful behaviours in more challenging and difficult environments. However,
if we look more closely at the resulting Z-scores and p-values we see that both
the Presence and Action strategies rarely demonstrate a significantly better dif-
ference in eat actions over populations of no social agents, and even when sig-
nificant differences are seen they are with relatively weak and therefore lead us
to the conclusion that we cannot say with any certainty that either the Pres-
ence or Action social information strategy provides a significant improvement
over having no social information at all. Despite the poor performance seen for
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all strategies in later environments, all strategies were capable of enabling at
least one population to achieve a positive eat profile in all environments. It is
also worth noting the inconsistent results observed with regard to the No Social
strategy in environments 7 and 8. Despite the median result fluctuating in a way
that suggest environment 8 was less challenging than environment 7, there was
no statistically significant difference between the distribution of results for these
environments.

Despite Presence and Action social information being of dubious value, it
does seem that both Health and Age social information provide a more convinc-
ing benefit. We can see in Fig. 2(c) that populations using social information
about the health of other agents demonstrate a significantly better difference in
eating actions until environment 7, this performance difference is most notice-
able in less difficult environments (environments and 1 and 2) where we see
a p value <0.01. Populations using social information about age (as seen in
Fig. 2(d)) also demonstrate a significantly better difference in eating action in
less difficult environments, though the statistical significance over environments
is less consistent. However, the two most significant Z-scores seen relate to no
social information vs. age social information on environments 1 and 2, which
suggest that social information about age is particularly useful in these less dif-
ficult, but still challenging environments. From this data we can begin to see the
potential advantages of certain types of social information.

4.2 Social Information Performance in Less Difficult Environments

In Fig. 2 we see that environment 1, where there is a 1:1 ratio of positive to neg-
ative plant resources, gives rise to a significant difference in eating performance
when social information populations are compared to populations with no access
to social information, with this result being extended to environment 2 (a 1:2
ratio) for both Health and Age social information populations. This suggests
a particular benefit to using social information in less difficult environments.
It is worth noting here that whilst environment 1 and 2 are less difficult than
later environments used here, they are still themselves reasonably challenging
given that we could have tested in environments with positive plant resources
in abundance. Having a 1:1 or 1:2 ratio of positive to negative plant resources
provides a reasonable challenge, so much so that in environment 3 we see that
non-social populations, relying on evolution alone and having no access to social
information, now begin to struggle at the task. Figure 3 shows a wider range
of performance metrics for environment 1, including the breakdown of success-
ful and unsuccessful eating actions in isolation. Here we see that the success of
social information populations is as a result of both higher eat success rates and
lower eat failure rates, though it is interesting to note that Age, Presence and
Action social information populations are capable of demonstrating very low
levels of eat success, even when compared to No Social populations, when the
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Fig. 2. Difference between successful and unsuccessful eat actions: Graphs showing the
difference in % of actions that qualified as successful eating actions and % of actions that
qualified as unsuccessful eating actions in each environment, for each social information
strategy compared against no social information. All graphs show the Z-score from an
Mann-Whitney U test on the secondary y axis, with highlighting included to indicate
statistical significance. Each data point represents the median of the average results
for forty populations.

full data range is considered. The main driving force behind the success of social
populations, especially Health and Age, seems to be consistently low eat fail
rates across populations - the upper quartile ranges for both of these strategies
not exceeding 0.02 (2% of actions). This suggests that social information is often
being used to help agents avoid or not consume negative plant resources. Age
and Health information may be particularly useful for this purpose as it would
allow agents to avoid or ignore young or unhealthy agents whilst developing a
preference for healthy and older agents. Whilst Presence or Action information
may also be useful for the purposes of discrimination (move towards areas of high
agent presence, or follow moving agents for example), they are both potentially
riskier sources of information compared to Health or Age which both provide
information about agent success. Figure 4, which shows performance metrics for
environment 2, also shows that for Age social information this ability to main-
tain consistently low rates of unsuccessful eating alongside a strong eating success
performance is maintained in slightly harder environments. We can also see that
for unsuccessful eating actions, the upper quartile range for social information
strategies is comparable to the median for no social populations.
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Fig. 3. Environment 1 box plots: Box plots for the eat action and other population
metrics, including a breakdown of successful and unsuccessful eating actions, average
agent age, and agent turnover, in environment 1.

Alongside information about eating, both Figs. 3 and 4 also give information
on average agent age and agent turnover. For both environments 1 and 2 we
see both Age and Health social information enabling populations to accomplish
a high average agent age with an accompanying reduction in agent turnover
(fewer agents dying within an epoch due to running out of energy), though
the median agent turnover for Health social information is comparable to the
no social tests. Both Presence and Action populations fail to distinguish them-
selves from No Social populations, suggesting the improvements in eating perfor-
mance seen most notably in environment 1 do not necessarily translate directly
to improved survival, this suggests there must be other underlying behaviours
that are causing these populations to use more energy thus resulting in lower
average ages and a higher agent turnover when compared to the Age and Health
social information populations. We suspect the indeterminate quality of both
Presence and Action information causes agents using this information to be less
discerning about which agents and plant resources they move towards, result-
ing in less informed movement and therefore less efficient energy expenditure -
though further analysis will have to be done to confirm these suspicions.
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Fig. 4. Environment 2 box plots: Box plots for the eat action and other population
metrics, including a breakdown of successful and unsuccessful eating actions, average
agent age, and agent turnover, in environment 2.

5 Conclusions and Further Work

The work presented here, alongside results from of Mitri et al. [17], contribute to
the discussion on the adaptive value of social information for evolved simulated
agents by demonstrating that social information can provide an adaptive benefit
to a neuroevolutionary process when decoupled from a within-lifetime learning
process. However, we do see that social information is only of an consistent adap-
tive benefit in less difficult environments, and when the social information itself
is informative. This work also demonstrates the potential adaptive benefits of
simple social and public information strategies such as social influence, social
facilitation, stimulus enhancement, and local enhancement [8,13,14,25], adding
further weight to the work by Noble and Todd [15] in which it was argued that
simple social learning mechanisms are capable of producing complex adaptive
behaviours that may easily be confused for the resulting behaviours of more com-
plex social learning mechanisms. The social information strategies implemented
here could be argued to be mechanisms of stimulus and local enhancement as the
social information inadvertently expressed here by agents could be used by others
as an attractor to unfamiliar plant resources or a promoter of eating (or other)
behaviours. However, we also see evidence of social information potentially being
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used to ignore locations or being used to suppress eating (or other) behaviours,
which may indicate some level of information suppression [17]. Moving forward
we intend to undertake a greater analysis of the behaviours being expressed
by agents in this work. It would be of interest to see how often non eating
actions are utilised by agents and whether the amount of movement undertaken
by agents is promoted by having social information, with further investigations
being necessary to ascertain whether this movement results in greater or lesser
agent grouping, as evidence from other fields suggests that social information
should result in larger groups, thus promoting more informed individual deci-
sion making based on the larger quantities of social information made available
as a result of having a larger social group [1].
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21. Danchin, É., Giraldeau, L.A., Valone, T.J., Wagner, R.H.: Public information: from
nosy neighbors to cultural evolution. Science 305(5683), 487–491 (2004)

22. Yang, S.X., Meng, M.: An efficient neural network approach to dynamic robot
motion planning. Neural Netw. 13(2), 143–148 (2000)

23. Robinson, E., Ellis, T., Channon, A.: Neuroevolution of agents capable of reactive
and deliberative behaviours in novel and dynamic environments. In: Almeida e
Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007.
LNCS (LNAI), vol. 4648, pp. 345–354. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74913-4 35

24. Stanton, A., Channon, A.: Incremental neuroevolution of reactive and deliberative
3D agents. In: ECAL 2015: Proceedings of the Thirteenth European Conference on
the Synthesis and Simulation of Living Systems, pp. 341–348. MIT Press (2015)

25. Acerbi, A., Marocco, D., Nolfi, S.: Social facilitation on the development of foraging
behaviors in a population of autonomous robots. In: Almeida e Costa, F., Rocha,
L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol.
4648, pp. 625–634. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74913-4 63

View publication statsView publication stats

http://dx.doi.org/10.1007/978-3-540-74913-4_35
http://dx.doi.org/10.1007/978-3-540-74913-4_35
http://dx.doi.org/10.1007/978-3-540-74913-4_63
https://www.researchgate.net/publication/315638909

	Evolutionary Adaptation to Social Information Use Without Learning
	1 Social Information, Learning and Evolution
	2 EnVar and Environmental Set-Up
	3 Neuroevolutionary Model
	3.1 The Shunting Network
	3.2 The Decision Network, Neuroevolution and Reproduction
	3.3 Agent Actions and Action Energy Costs
	3.4 Social Information Strategies

	4 Results and Discussion
	4.1 Eat Action Performance
	4.2 Social Information Performance in Less Difficult Environments

	5 Conclusions and Further Work
	References


